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LIQUID CRYSTALS, 1989, VOL. 5, No. 2, 699-715 

Invited Lecture 
New results on the electrohydrodynamic instability in nematics 

by L. KRAMER, E. BODENSCHATZ, W. PESCH, W. THOM and 
W. ZIMMERMANN 

Physikalisches Institut der Universitat Bayreuth, D-8580 Bayreuth, F.R. Germany 

We present theoretical results on the threshold and near-threshold behaviour 
of electrohydrodynamic convection of planarly aligned nematics under D.C. and 
A.C. driving. We use the general three dimensional description and include the 
flexoelectric effect. The experimentally established threshold behaviour is captured 
in many cases quantitatively, an exception being the extended travelling patterns. 
Slightly above threshold the observed undulated rolls pose some problems. Defect- 
mediated turbulence can presumably be explained by mean-flow effects. 

1. Introduction 
When an alternating voltage is applied across a thin layer of nematic liquid crystal 

with negative (or slightly positive) dielectric anisotropy E, ,  sufficient (ionic) conductiv- 
ity and uniform orientation of the director A in the plane of the layer, an instability 
of the basic unstructured state occurs which, under ideal conditions, leads to a 
periodic pattern of convection rolls connected with periodic distortions of the director 
(for reviews see [I-31). There is a sharp and reversible threshold for this phenomenon 
which, at low frequencies, is typically between 5 and 1OV. When the voltage is 
increased further transitions are found to more complicated spatio-temporal states 
which are usually heavily influenced by defects and often exhibit irregular motion 
(weak turbulence) [4-61. If the increase in voltage is performed adiabatically slowly 
and the conditions are sufficiently ideal, well defined secondary transitions to essenti- 
ally perfect structures, which in most cases are periodic in two directions, can 
sometimes be observed [7, 81. At sufficiently high voltage a transition to strong 
turbulence occurs (often called the dynamic scattering mode). 

This electrohydrodynamic convection (EHC) in nematics, which was discovered 
about 25 years ago and was intensely studied until about 1975, has received renewed 
interest in recent years. One of the reasons for this is the present general interest 
in pattern-forming systems (see, for example [9, lo]). In this context EHC has 
some unique features. Due to the small thickness of the layers (usually 5-200pm) 
the relaxation times are short and specimens can easily be produced with large 
aspect ratio (ratio of lateral dimension to thickness). There are several easily 
accessible external control parameters and, in principle, a vast variety of nematics 
with very different material constants so that very rich scenarios can be observed. 
Planar anchoring of the director at the upper and lower plates provide for an axial 
anisotropy, so that the pattern orientates with respect to the preferred axis. 
Unfortunately there is only one material, 4-methoxybenzylidene-4-n-butyl aniline 
(MBBA) which has E, < 0 and for which all the material parameters are known, but 
this material is chemically rather unstable. Moreover, the theoretical description of 
EHC is very complicated due to the complexity of the underlying hydrodynamic 
equations. 
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700 L. Kramer et al. 

The basic equations used are provided by the standard hydrodynamic description 
of nematics (see, for example [3]). They consist of momentum balance (Navier-Stokes 
equation) together with incompressibility V * v = 0, which determine the velocity 
field v, and the balance of torque which gives the director A. Moreover, there are 
electric field equations in the quasi-static approximation 

div D = Qe, curl E = 0, (1) 

D = EE + PHexo, (2) 

div j + aQ,/dt = 0, (3) 

j = aE + eev. (4) 

Here the dielectric and conductivity tensors e and a are characterized by E, .  and cll (or 
E, = ell - E,.) and cr,. and uII, i.e. their components perpendicular and parallel to A. 
The flexoelectric polarization is given by [ 1 1, 121 

PRexo = e, A(V - il) + e,(A - V)A. ( 5 )  

Equations (1)-(4) couple to the Navier-Stokes equation mainly through the volume 
force eeE and to the torque balance equation through the dielectric and flexoelectric 
torques. The full set of equations has to be supplemented by appropriate boundary 
conditions at the upper and lower plates. 

The threshold for EHC is calculated by assuming that all quantities deviate only 
very little from their values in the basic unstructured state, which is characterized by 
v = 0, A = A (we choose the layer in the xy plane), E = ( V ( t ) / d ) f  (V  is the 
externally applied voltage and d is the layer thickness), e, = 0, j = a,E. We then 
write fi = (cos 6 cos $, cos 6 sin $, sin 6) and linearize the equations in the small 
deviations. The resultant set of linear partial differential equations does not depend 
on x and y explicitly (translational invariance). They thus admit (modal) solutions 
which are harmonic in x and y and may be chosen proportional to sin (qx + p y )  and 
cos (qx + p y )  (wavevector q = (4, p ) ) .  

The pressure can be eliminated by taking the curl of the Navier-Stokes equations, 
and using equations (1) and (3) to eliminate the charge density e,, and satisfy 
curlE = 0 by writing 

E = - V 4  + (V( t ) /d ) i ,  

where 4 is the induced potential. We consider constant or time-periodic driving 
voltages V( t )  (period T = 2n/w). The temporal behaviour of the modes is then 
expected to be of the form 

~ ( t )  = ii(t)expcrt, 

u = (4, 6 ,  $ 9  v), 

cr = cr’ + id’, 

where ii is periodic (ii is constant if Vis constant; the overbars are omitted from now 
on) and cr is the Floquet coefficient. We are then left with equations of the general 
form 

M ~ , u  = Lu, (7) 
where the 6 x 6 matrices M and L depend on V( t ) ,  q and 0, and contain deriva- 
tives with respect to z (see [3, 15, 181 for an explicit presentation of the set (7)). 
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Invited Lecture: Electrohydrodynamic instability in nematics 70 1 

The boundary conditions are 

u = 0 at z = +d/2,  

(from V v = 0 we also have a,v, = 0 at z = f d/2). Here rigid, planar anchoring 
of the director and ideal conducting electrodes are assumed. 

Direct numerical solution of the partial differential equations (7)  by discretization 
in z and t appears feasible only in the D.C. case (no time dependence of u) and has 
been done there [3, 13-15]. In general we either make a Fourier expansion in t [3], or 
expand the z dependence in an appropriate set of functions (the Galerkin method) 
[15, 161, or expand in both variables. Meaningful approximations are obtained by 
truncating the expansions, keeping one trial function for each relevant symmetry class 
(see $2) [3, 14-17]. In any case we obtain a relationship between a = 0’ + id ’  and q. 
The most dangerous mode is that with maximal growth rate corresponding to 
some q = q,,, . The calculation gives akdx and q,,, (up to degeneracies) as a function 
of the external control parameter. 

The basic state is stable when akdx < 0, and the threshold for instability is 
obtained when okdx goes through zero. This condition leads to a determination of the 
critical voltage V ,  (threshold) and critical wavenumber q, as a function of the other 
parameters. Alternatively, we may determine the neutral surface &(q) from the 
condition a’(q) = 0 (by taking the largest solution branch) and obtain V ,  and q, from 
minimization of &(q). In the simplest case the instability is expected to lead to a state 
that is characterized by the linear mode with wavenumber 9,. Therefore, if 0’’ = 0 at 
threshoId (stationary bifurcation) the structure is stationary, and if d’ # 0 (Hopf 
bifurcation) a travelling pattern is expected, or maybe an oscillatory standing pattern. 

In the $2 some symmetry considerations, which are essential in order to classify the 
modes, and some scaling properties are given. In $3 we present an explicit treatment 
of the D.C. case by trial functions, which exhibits some of the symmetry consider- 
ations and shows that our treatment includes the simpler instabilities as special cases 
(details are deferred to the Appendix). In $4 results for the A.C. and the D.C. cases 
are given, and in 95 the question of the determination of the amplitude of the structure 
slightly above threshold is addressed. Moreover, some problems of more-complicated 
patterns, and defects in this weakly non-linear region are discussed. We end by 
discussing some open problems. 

2. Basic symmetries and scaling 
It is useful to consider some symmetry properties of the boundary value problem 

(see equations (7) and (8)) [16]. We first consider the case without flexoelectric effect 
(e, = e3 = 0). There are then two separate symmetries 

v + - v, (4, 6, $, v,, vy, v,> + f (- 4, 8, $, v,, vy, vz), (9) 

(4, 8, $, v,, vy, v,) + *(d, 0, -$, -vx ,  -vy, v,). (10) z + - z ,  

The fact that the overall sign of u can be changed is simply a consequence of the 
linearity of equations (7) and (8). The symmetry (9) expresses the fact that without the 
flexoeffect the polarity of E does not affect ii and v. The symmetry (10) is then a 
consequence of the overall reflection symmetry. From (10) it follows that there are 
two classes of solutions with 

(4(-z), W Z ) ,  $( - z ) ,  v,(--z), .,(-z), v,(--Z)) 

* (4(z), @>, - $G), - v,(z>, - v,(z), v,(z>>, = ( 1  1) 
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702 L. Kramer et ul. 

where (+ denotes type I and - denotes type 11). The lowest threshold is always 
obtained with a solution of type I. In the important, but special, case of a pure A.C. 
voltage, i.e. a time-periodic voltage with 

V(t  + 772) = - V ( t )  (12) 
(T = 2x/o is the period), the symmetry (9) is evoked by the transformation 
t + t + T/2. Thus the T-periodic solutions of equation ( 7 )  fall into two further 
classes with 

( N t  + T/2),  Qt + T/2), $( t  -t- T/2), v(t + w>> = f (-- 9v0, w>, +(t>, v(O), 
(13) 

where (+ denotes type A and - denotes type B). Usually the type A solution leads 
to the lowest threshold in the low frequency, conduction regime whereas the type B 
solution leads to the lowest threshold in the higher frequency, dielectric regime. For 
square wave A.C. excitation it is easy to see that in the limit w + 0 the threshold for 
both modes tends to the D.C. threshold. For other waveforms (e.g. sinusoidal) this 
result presumably remains true in some approximation (see Appendix B of [ 3 ] ) .  

With the flexoelectric effect the separate symmetries (9) and (10) are destroyed, but 
the combined symmetry z -+ - z ,  V -+ - V remains (overall reflection). Thus for 
D.C. or combined D.C.-A.C. excitation where V has a definite polarity, the modes 
have no symmetry. As a consequence the motion of the fluid particles is helical in the 
oblique-roll regime [13-15]. However, in the pure A.C. case with (12) there are still 
two separate modes. The conduction mode consists of a superposition of a type 1A 
and a type IIB function, and the dielectric mode is made up of a type IB and a type 
JIA part. In that case the motion of fluid particles is rather complicated and a net 
helical motion in oblique rolls does not appear to exist. 

An important property of the boundary value problem (7), (8) is that if all lengths 
are measured in units of the layer thickness d, times in units of a typical director 
relaxation time zd z aod2/x2k, (ko ,  a, are a typical elastic constant and viscosity, 
respectively) and uses the applied voltage (not the electric field), then zd enters only 
in the combination z,/z,,, where zo zs &co/oo is a typical charge relaxation time (go is 
a typical conductivity). As a consequence the conductivity and thickness, which are 
varied quite easily in experiments, enter only in the combination god2. In the D.C. case 
cod2 does not enter at all (see §3) ,  so the threshold behaviour is independent of o,, and 
d (qc zs d '). This remains true in the lowest order, time Fourier approximation of 
thc A.C. case, which is essentially valid in the conduction regime for T~ & to [ 3 ,  171. 
In the dielectric regime an analogous approximation gives V,  x ( k O / ~ 0 ) ' / 2  q,d and 
q,d % (ZdW)"2. 

3. D.C. threshold 
In the D.C. case the trial function approach leads to formulae for the threshold 

that can still be evaluated essentially analytically, and some generalization to the A.C. 
case is possible. We choose 

(4,  6 ,  $, v,, v,) = (P ,  @, @, v:, ui).h(z) + (@, O", $", v:, v;>fi(z), (14) 

'uz = 'uS"&(z) + z):h(z), (1 5) 
where f i  and f3 are symmetric and f2 and fk are antisymmetric in z ,  with ji = 0 ,  
i = 1, . . . , 4, and 8.h = d , f ,  = 0 at  z = f d/2. A convenient choice is given in the 
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Invited Lecture: Electrohydrodynamic instability in nematics 703 

Appendix, and others are presented elsewhere [14, 151. For a stationary bifurcation 
there is no time dependence at threshold, so we have only to deal with the right-hand 
side of equation (7). Projecting each component of equation (7) ontof, andfi, orf3 
and f 4 ,  respectively, we obtain a 12 x 12 system of algebraic equations. It is then 
feasible to eliminate successively vi, v:, qY, @', v;, TJ;, vi and v," . The remaining 4 x 4 
system can be written as 

Ar = 0, r = (P, $a, 8", @)>, (1 6) 

/ . , I  + R2bll 9 Ra,, Ra14 \ 

\ Ra41 _ _ -  Ra42 a43 + R2& / 
where R = V E ; ' ~ / Z .  The expressions for the coefficients a,] and 6 ,  are given in the 
Appendix. Assuming a stationary bifurcation the condition that a mode with wave- 
vector q is neutral is determined by the solvability condition of equation (16), 
Det (A) = 0. This is easily seen to lead to a cubic equation for R2 = Ri(q) which may 
be solved on a small computer and minimized with respect to q. 

Actually it is now easy, to derive various known special cases and additional 
simplifications from equations (16) and (1 7). 

(a) No flexoelectric effect (el  = e3 = 0). Then all the coefficients in A propor- 
tional to R vanish. The solvability condition reduces to the product of two first order 
equations for R2 corresponding to type I and type I1 solutions. The neutral surface 
is determined by 

R; = (alla22 - al2a*l)/(al2b2l - blla22>> (18) 

(existence of non-trivial type I solutions) which is equivalent to that given previously 
[3 ,  171. Equation (18) is easily extended to the A.C. case (conduction range) in the 
lowest order, time Fourier expansion [3, 171. 

(b) Generalized one dimensional model. Then all of the z dependence is neg- 
lected so that most of the integrals in the Appendix are zero (only M4 and M6 are 
non-zero). As a consequence all the terms in equation (1 7 )  that are underlined vanish. 
Again there are two first order equations in R2. The neutral surface is then 

R; = a1,a,/(a,,a4, - b,,a44), (19) 

which is equivalent to the previous result by Madhusudana et al. [19]. In that paper 
the influence of the flexoelectric effect on oblique rolls was analysed for the first time. 

(c) Normal rolls. For p = 0 many coefficients in A vanish and the condition 

(all + R2h,I) (ail + R2b33) - R2a13a31 = 0 (20) 

is obtained. Even when the terms proportional to p 2  are included the solvability 
condition remains quadratic in R2. This is all we need to determine the continuous 
transition to oblique rolls. Without the flexoeffect aI3a1, = 0 and equation (20) 
simplifies further. 

= b43 = 0. Then 
the flexocoefficients only appear in the combination el - e3 and the solvability con- 
dition, which is quadratic in R2, gives the static instability first considered by Bobylev 

( d )  Longitudinal rolls. For q = 0, aIi = q1 = = adz = 
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704 L. Kramer et al. 

and Pikin [20]. Without the flexoelectric effect the condition reduces to 

which is also obtained from equation (18) with q = 0. ( A x ,  h, and hZ describe an 
additional magnetic field along one of the axes; see Appendix.) This relationship 
describes the periodic splay-twist Frhedericksz transition discovered by Lonberg and 
Meyer for materials with large k , ,  /k22 [21]. 

4. Results of the linear theory 
Some rigorous results on the threshold behaviour in the D.C. case including the 

flexoelectric effect were given before [13, 141. Here we wish to add some results. In 
figure 1 the angle of the rolls with respect to the molecular alignment, a, as a function 
of the flexoelectric strength is plotted (otherwise standard parameters of MBBA, see 
[14]). Setting el + e3 = 0 and varying el ~ e3 leads to a rather steep transition from 
normal rolls with a = 0 (el - el < 0.7 x 10-4esu) to parallel rolls with c( = 90" 
(el - e, > 3.2 x 10-4esu). The latter case corresponds to the non-convective 
Bobylev-Pikin transition [20]. Note that thc results are invariant under a sign change 
of el and e,. In the other extreme, el - e3 = 0, the oblique rolls always remain below 
a limiting angle. Also shown in figure 1 is the case c, + e?, = - 7.0 x 10-4esu, 
which corresponds to a recent measurement for MBBA [22]. The point el - e3 = 

1.2 x 10-4esu where a = 43.6" corresponds to  a measurement of this quantity [23]. 
Also plotted is the curve according to the approximate treatment of $3. 

In figure 2 we show a as a function of the anisotropy of the conductivity oI,/ol for 
flexocoefficients <el and <e3 with el = - 2.9 x 10 4esu and e3 = - 4.1 x 10 4esu 
from [22, 231 and 0 < < < 1 (otherwise standard MBBA parameters). Without the 
flexoelectric effect (< = 0) the normal-oblique transition (Lifshitz point) occurs at 
oll/a, = 1.76 [3]. Turning on the flexoelectric effect moves the Lifshitz point to the left 
until the roll angle remains finite for all G ~ , / G ,  > 1 .  For < = 1 the roH angle is rather 
insensitive to changes of oir/crl but the threshold diverges for oII /o --., I ,  as is the case 
for all values of < < 1. The broken curves show the results of the approximate 
treatment for < = 0, 0.2 and 1. 

n 
- 2 0 2 4 6  

[[el+e31 o r  ( e ; - - e 3 1 ] l l ~ ~ e s u  

Figure I .  Roll angle c( with respect to the molecular alignment as a function of el + ej  
or e ,  - e 3 ,  the other quantity being constant, calculated using MBBA parameters 
( ~ l i / ~ l  = 1.5). 
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90 

:a 
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0 
1.0 1.2 1.4 1.6 1.8 2.0 

011 '01 

Figure 2. Roll angle tl as a function of the anisotropy of the conductivity oII/oL for various 
values of the flexoelectric strength 5: the flexocoefficients are (el and 5e3. 

U 

20 

1 0  

0 
0 10  20 30  40 0 10 20 30 40 

f /Hz f /Hz 
Figure 3. Threshold voltage, K ,  and wavenumber qc in units n/d as a function of frequency 

for MBBA with old2  = 0.28 x 10-4Q-'m-1pm2, oll/ol = 1.65 and reduced flexo- 
coefficients (see text). 

Increasing 5 beyond unity leads to a finite threshold at al,/o, = 1, and even for 
negative anisotropy of the conductivity ol, - oI . Then the Carr-Helfrich mechanism, 
which is ordinarily the main driving force for the instability, becomes unimportant 
and the instability becomes purely driven by the flexoeffect. This type of effect was 
also found by Madhusudana and Ragunathan [24] within a one dimensional model 
at finite frequency and is discussed there. 

Now turning to the A.C. case we first show in figure 3 a comparison of the 
theoretical results for MBBA with experiments by Kai [25] on a rather thick 
(d = 100pm) and clean sample. o, was not measured and we chose 0.28 x 
10 'Q lm  I to fit the cut-off frequency with all/o, = 1.65. The flexocoefficients 
were chosen as e,  = - 1.1 x 10-4esu and e3 = -2.0 x 1OP4esu, which is con- 
siderably smaller than the values derived from [22, 231. For the measured values 
we would obtain oblique rolls at threshold of the dielectric regime which is in 
agreement with previous calculations using the one dimensional model [24]. However, 
normal rolls are observed at threshold [25] (the well known chevrons are connected 
with a secondary instability, see §6.  Since it is well known that measurements of the 
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706 L. Kramer et al. 

.4 

. 3  

.2 

.1  

0 
100 1000 10000 100000 

od*/io-ec-2-1prn2m-1 

Figure 4. Reduced Lifshitz point frequency ui,q, as a function of old2  in units l O - ’ K ’  m-’ pm2 
for MBBA and two values of al,/a, (--) with and (- - -) without the flexoeffect. 

e, are problematic, we suggest that their values are in fact considerably lower than 
suggested by the results of [22, 231 (for example we mention the result of el + e3 = 
- 3.1 x 10P4esu found in [26] instead of - 7.0 x 10P4esu in [22]). 

The agreement of the frequency-dependent threshold and the wavenumber with 
experiment is seen to be good (the wavenumber in the dielectric regime was not 
measured), except at frequencies, ,L below about 4 Hz. Here, presumably, electro- 
chemical effects become important. For thinner or cleaner samples (cod2 smaller) the 
cut-off frequency in units of 2,’ becomes smaller and the threshold as well as the 
reduced wavenumber qd in the dielectric regime are decreased [15, 16, 241, behaving 
approximately as ( ~ , , d ~ ) ” ~  (see $2). 

In figure 4 the Lifshitz point frequency o, multiplied by zo = E ~ E ~ / ~ ~  is plotted as 
a function of nL dZ for cI,/cL = 1.5 and all lo, = 2-0 (otherwise MBBA parameters). 
Without the flexoeffect there are normal rolls everywhere for all/aI of 1.5 [3]. For 
all/o, equal to 2.0 there is a plateau value for o,zO at large values of ad2 and a 
moderate decrease of W , T ~  when ad2 is decreased [3]. The plateau value is obtained 
by the lowest order, time Fourier expansion. With the flexoeffect (coefficients from 
[22, 231) we always have an oblique-roll regime at low frequencies. For aII/a, = 1 5 ,  
however, o,zO + 0 for ad’ + co, whereas (O,T,, is non-monotonic for ol,/al = 2.0. 
Obviously for large values of od2 the influence of the flexoeffect becomes small, which 
can be understood from the fact that it drops out of the lowest order, time Fourier 
approximation, which then becomes valid. As far as we can see these effects cannot 
be captured in a one dimensional model. 

5. Weakly non-linear region 
In the vicinity of the threshold of EHC the spatially periodic solutions and their 

slow space and time modulations can be described by equations for a complex 
amplitude (or envelope) A ,  the so-called amplitude (or envelope) equations [3, 27,281. 
The physical quantities u = (4, 0, $, v) are then obtained in the form 

uJ = Y,  ~ ) ~ , e x p [ i ( q , x  + p,y)] + c.c.]w,(z, t )  + O(E),  (22) 

(I U, I = 1) where E = ( V2 - K2)/K2 measures in a dimensionless way the distance 
from threshold, 

X = E ‘ ’ ~ X ,  Y = C ” ~ J I ,  T = &t (23) 
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Invited Lecture: Electrohydrodynamic instability in nematics 707 

are slow space and time variables, and C.C. denotes the complex conjugate. The w, 
correspond to the linear modes discussed before. 

The slow variables capture the shape of the neutral surface, which is parabolic in 
q and p around q, = (q,, p , ) ,  and the behaviour of the linear growth rate. Near the 
Lifshitz point, where the curvature of the neutral surface with respect to p vanishes, 
a different scaling for the Y coordinate has to be used [3, 27, 281. This case is not 
considered here. 

Carrying the expansion of the equations up to order E ~ ’ ~  we obtain as a solvability 
condition the envelope equation 

T,&A = [(:a:, + (;a; + 25, t,aa,a, + I - IA I2]A, (24) 

as well as the normalization of the w, in equation (22). In the normal roll case a = 0 
and in general 0 < a < I .  The parameters in equation (24) are calculated from the 
linear analysis [3, 27, 281. Results for MBBA within the lowest order, time Fourier 
expansion in the conduction regime are given elsewhere for normal [3, 291 and for 
oblique [30] rolls. In an experiment by Rasenat et al. [31] the angle I3 of the director 
was measured near threshold in the normal roll regime by an elaborate optical 
method. Good agreement with the linear modes and the law, including the 
calculated normalization, was found for E z 0.1. 

By rotation and scaling of the coordinate system equation (24) can be transformed 
into the more symmetric form [32] 

& A  = (V + 1 - IAIZ)A, v = a:,, + a;.. (25) 

A = (1  - Q’ - P’)”’exp[i(QX’ + PY’)]. (26) 

Equation (25) has stationary solutions of the form 

From equation (22) we see that they describe roll patterns above threshold with the 
wavevector 

q = [q, + &I1’ (Qcosa/(+ - Psina/[.. ), pc  + (Qsina/ t+ + P c o s a / ( _ ) ] ,  
(27) 

where 

t’, = +{G + t: + [(t: - 53’ + 4a2t:5Y2}, tan (2a) = 2a t L M E  - 53. 
A linear stability analysis of the solution (26) shows that it is linearly stable for 

Q’ + P2 < 1/3 [27]. This is a direct generalization of the Eckhaus instability criterion 
for quasi-one dimensional systems [33, 341. We see that there is a stable two dimen- 
sional wavevector band inside the range of existence Q’ + P’ < 1. Thus, even in the 
normal roll range under ideal conditions where the effect of fluctuations and 
inhomogeneities, including boundaries, are negligible, oblique patterns should be 
experimentally accessible. 

If the system is initialized in the unstable region the pattern evolves to the 
bandcentre and ends up with a final state which is expected to be 0 ~ K. K is the 
modulation wavevector of the most rapidly growing disturbance. This evolution 
process was studied in the one dimensional limit theoretically [35] and experimentally 
for EHC [36]. In the two dimensional case the roll system is first modulated by the 
unstable mode, which then tends to evolve into dislocations which are created in pairs. 
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By motion and destruction of these defects the system changes the wavevector of the 
pattenn and again ends up near Q - K. In the presence of lateral boundaries this 
process is triggered at the boundaries [37]. 

States with Q # 0 in the Eckhaus stable range are metastable. Evolution to 
the bandcentre can occur by the motion of dislocations that are nucleated by 
finite fluctuations or perturbations [32]. Such a dislocation is described by a simple 
zero of the complex field A .  When going around the zero the phase of A changes 
by +2n. Equation (25) can be used to describe the structure and dynamics of 
dislocations as well as some nucleation properties. Stationary dislocations exist 
only at the bandcentre Q = 0. Away from the bandcentre (Q # 0) the direction 
of motion is perpendicular to the displacement wavevector Q (this is also true in 
physical units). 

The motion of dislocations can be separated into motion along the roll axis (climb) 
and perpendicular to it (glide). Whereas the climb changes the spacing of the rolls, the 
glide changes the orientation of the roll pattern. In isotropic systems, glide is only 
possible for non-potential situations [38]. In our analysis climb and glide motion are 
equivalent. This is true as long as non-adiabatic effects which couple the slow and fast 
variations can be neglected. Due to such effects the defects will have preferred 
positions in the underlying pattern as far as the glide is concerned. Therefore, gliding 
of dislocations will not quite act as an ideal selection mechanism, in contrast to climb, 
and leaves a wavenumber band with respect to orientation. Near to threshold such 
effects are expected to be small. 

Another difference from isotropic systems concerns the velocity of isolated dis- 
locations. Whereas for isotropic systems the velocity V scales essentially as Q3I2, for 
anisotropic systems like EHC the velocity V is essentially proportional to Q (from 
now on we choose P = 0). A detailed analysis of equation (25) [32] gives, in the limit 
I Q I  < 1, 

I V I  = P IQL  
2/ln(R/1.13), for I VI R < 1, 

P = {  2/ln (3.29/( Vl) ,  for I VI R + 1, 

where R = (X’2 + Y’*)’/* 9 1 is the system size in scaled units. By numerical 
simulation we have obtained the velocity in the full Q range and so have tested the 
validity of equation (28). A pseudo-spectral method with periodic boundary condition 
was used [39]. Two dislocations with opposite sign were initiated in a cell, which was 
sufficiently large that the influence of dislocation pairs in the neighbouring cells 
could be neglected initially. In figure 5 the velocity versus time behaviour of the 
motion of one of the dislocations in the simulations is shown for Q = 0.125. 
After an initial transient the dislocation moves with nearly constant velocity. The 
slight slope of the curve is due to the interaction with the other dislocations in the 
periodic grid. When the dislocations come near to the cell boundary the interaction 
with the dislocation of opposite sign in the next cell becomes strong. Thus the velocity 
increases until the defect annihilates. A similar behaviour of the annihilation process 
at the boundary was seen in experiment [40]. In figure 6 the numerical results (circles) 
for the velocity in the plateau region are plotted against Q. The solid curve gives the 
analytic result for VR 9 1 from equation (29). Clearly the analysis remains quite 
good even for moderate values of Q. For comparison with experiment the quantities 
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Figure 5. Velocity, V, of a dislocation versus time Tin reduced units (see text). The defect was 
initiated at T = 0 and annihilates at time T x 800 at the cell boundary. 

1.0 - Eckhaus 

L 

0.5 - 

t 
t 

A'' I 
Q 

Figure 6. Velocity, V, of an isolated defect versus wavenumber displacement Q. (0) Numerical 
results and (-) the analysis. 

Q and V have to be transformed into physical units. The detailed rescaling is given 
in [32]. 

In the oblique roll region line defects connecting roll patterns with p > 0 and 
p c 0 are also observed [7,8,41]. These grain boundaries can be studied in the weakly 
non-linear region using two coupled amplitude equations 
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Figure 7. Node lines of u for grain boundaries between regions with p and - p  according to 
equations (29) and (30) for a = 0.2, = 0.3, l2 = 0.06, y = 1.005, p,/q, = 0.6, 
E = 0.1. (u) The usual zig-zag boundary in the x direction. (b )  The non-adiabatic grain 
boundary parallel to one of the roll systems. 

which can also be obtained from weakly non-linear perturbation analysis. A typical 
physical field u can then be written as 

u, = di2 { A ( X ,  Y,  T)exp[i(q,x + p c y ) ]  + B(X ,  Y ,  T )  

x exp [i(q,x - p c y ) ]  + c.c.} + O(E) .  (30) 

The slow variables A', Y and T are scaled as in equation (23) .  For 0 < y 6 1 
equations (29) exhibit stable bimodal solutions (rectangles) whereas for y > 1 stable 
roll solutions exist, which is usually the case for EHC. y has not been calculated. 
We want to study solutions at  the bandcentre (qc ,  k p , )  where the amplitudes A 
and B are real functions. Numerical simulations show that equation (29) has grain 
boundary solutions with the boundary in any direction in space. The solution 
with the grain boundary parallel to the x direction (zig-zag structure, figure 7 (a)) 
has the lowest free energy. This is in agreement with experiment where mostly 
this type of zig-zag structure is observed. Another interesting direction of the 
domain wall (see figure 7(b)) is parallel to one of the roll systems. Although it 
has a higher free energy it is sometimes observed in experiments [41]. This stabilization 
is presumable due to non-adiabatic effects that are not included in the envelope 
approximation. We have used parameters typical for MBBA-like materials in the 
oblique roll range [ 3 ] .  In order to obtain the strong modulation of the structure, 
seen in some experiments [7, 81, we have to be near to the point where roll solutions 
cross over to rectangles (y = 1) (for increasing y the modulation length decreases). 
This means that in these experiments we have to be near to the rectangular state. 
It would be interesting to find a material where the bimodal structure already occurs 
at threshold. 

6. Concluding remarks 
We have given an overview of recent theoretical results for the threshold and 

near-threshold behaviour of EHC within the standard theory where the electrical 
properties of the planarly aligned nematic are described by (anisotropic) ohmic 
conductance, linear polarizability and flexoelectricity. All of these effects have an 
important influence on EHC. 

At this time we can understand qualitatively almost all of the effects which are 
observed at threshold. In many cases quantitative agreement is achieved. A very 
interesting exception is the extended travelling roll patterns, normal or oblique which 
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are sometimes observed in fairly thin (d < 50pm) samples (MBBA or similar 
materials) of intermediate conductivity [4, 6, 421, which have been identified to be 
connected with a primary (forward) Hopf bifurcation [6]. The effect occurs most often 
in the conduction regime near the cut-off frequency. Unfortunately, in this region the 
system is also quite susceptible to inhomogeneities. Thus, the persistent spatially 
localized travelling patterns which are sometimes observed are presumably in most 
cases, if not always, due to imperfections. 

The standard theory does not appear to give a primary Hopf bifurcation for 
MBBA-like materials (E ,  < 0) under D.C. or simple A.C. driving. There appear 
to be two promising directions in which the theory could be extended: according 
to the discussion in $2 there are two rather complicated but nevertheless independent 
modes that correspond to the conduction and the dielectric instability mechanisms, 
as long as the sample is up-down symmetric and there is sinusoidal-like A.C. 
driving (symmetry (12)). Coupling of two (stationary) modes is known to lead 
easily to a Hopf bifurcation. Unfortunately, since the critical wavenumbers are 
quite different, the coupling has apparently to be fairly strong. Evidence that this 
type of mechanism can work is provided by the fact that with a non-sinusoidal 
driving that violates equation (12) we can produce a Hopf bifurcation. Maybe a 
disturbance of the up-down symmetry is present in some samples, possibly involving 
tilt at the boundary. 

On the other hand, it may be necessary to introduce an additional dynamic process 
that is not included in the standard theory. Here electrochemical processes, especially 
those connected with charge-transfer at the electrodes, are the most likely candidates. 

In either case it now appears important to characterize experimentally the samples 
that show travelling waves in greater detail. Asymmetries and electrochemical effects 
probably both show up in the frequency-dependent I-V characteristics below threshold 
and could be investigated there. In this context it appears useful to point out the 
necessity of establishing a new standard material with E, < 0. It should be electro- 
chemically stable and all of the material parameters have to be measured accurately. 

Concerning the behaviour above, but still near to threshold (weakly non-linear 
region) there are several unexplained effects. First the undulated roll solutions, whose 
existence in a range between the normal and the oblique roll regimes near the Lifshitz 
point seems well established [7, 81, pose a problem. The universal amplitude theory 
of the type discussed in $5 and valid in the vicinity of the Lifshitz point [3,27,28] does 
not allow the continuous transition from normal to undulated rolls which is apparently 
observed. Although it is possible to incorporate such a transition in a phenomenologi- 
cal description, it does not appear to be possible to remedy the situation in the theory 
by carrying the amplitude expansion to higher order in the standard way, as can be 
seen by using a phase diffusion approach that is more generally valid [43]. 

It appears likely however that inclusion of so-called mean flow effects which 
account for an additional slow and weakly damped mode which is excited by spatial 
variations of the amplitude function, introduced in $5, will alter the situation. Such 
effects are well known for isotropic systems [44] and were recently calculated for EHC 
using simplifying stress free boundary conditions at the upper and lower plates. Here 
they destabilize all roll solutions at threshold by an undulatory instability [30]. The 
undulations are, however, not stabilized. Instead they appear to render the system 
weakly turbulent. There is reasonable hope that with realistic boundary conditions 
this instability is weakened. Then undulations might stabilize in some range and a 
continuous transition between normal and undulated rolls may become possible. 
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There is also reasonable hope that the direct transition to turbulence is not 
totally abolished by realistic boundaries but only transformed into a secondary 
transition occurring at a slightly higher threshold, as is observed [4-61. This 
secondary transition involving irregular motion of dislocations is seen not only 
for stationary and travelling rolls in the conduction regime, but presumably also 
the transition to chevrons in the dielectric regime is of this general nature. One 
then also observes the spontaneous appearance of defects, which, as their density 
grows above threshold, gradually order along lines which form the boundaries of 
the chevron domains. 

Finally, we point out that even in the stable region the motion of defects must 
be expected to be influenced by mean-flow effects as is known from isotropic 
systems [45]. 

Work towards an understanding of some of these fascinating phenomena is in 
progress. Of course, even more challenges are provided by the rich behaviour found 
further away from threshold. 

We thank I. Rehberg and M. de la Torre for many discussions and exhibitions 
of real experiments. Stimulating discussions with A. Joets, S. Kai, M. Kaiser, 
N. V. Madhusudana and R. Ribotta are gratefully acknowledged. This work was 
supported by Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 2 12, 
Bayreuth), Fonds der chemischen Tndustrie, Emil-Warburg-Stiftung, Bayreuth, and 
HLRZ, Jiilich. 

Appendix 
We measure lengths in units of d/n,  normalize the functionsf,, fi,h and f4  such 

that J;’:,f;’(z)dz = 1, and define the following integrals (the integration range is 
always riom -n/2 to 
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J 

(A3) 

aI2 = all = -a34 = -a43 = -P(klI - k22V43, 

b21,43 = -Pq2 5 . 4  9 

a13,31 = T q2(el + e3)(M3aa/al,2 k 6 , Z M 6 , 7 ) ,  

a24,42 = P2q2 (el f e 3 ) 5 , 4 M 4 , 5 ,  

a23,41 = P - e3> + q2 + e 3 ) ( 0 ~ / a 1 , 2  + v3,4M6,7)1, 

a14,32 = -P [(el - e3) + q2 (el + ~ ~ ) ~ , z M ~ , s I .  

The k,, are the usual Frank elastic constants and h,, h, and h, denotes a magnetic field 
along the respective axis in units (xapo)1’2(d/n) (only one hi may be non-zero). The 
physical wavenumbers are given by qnld and pnld. 

A useful set of trial functions is [14] 

fi = (3O/d)Ii2 (x2/4 - z’), f2 = ( 8 4 0 / ~ ~ ) ” ~  (n2/4 - z2)z,  

f3 = (630/n9)”’ (n2/4 - z2)’, f4 = (27720/n11)1/2 (~’14 - z’)’z. 

Then we have 
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M7 = [33/(771’)]1’2, M 8  = ( 8 4 / ~ ~ ) ” ~  

Mg = 31’2 (84/d),  M,o = 12/71’, 

MI, = 33’” ( 6 / ~ ’ ) ,  MI2 = 0, 

M , ,  = 441~’. 
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